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Synopsis 

The inertia free flow of a one-dimensional, isothermal fluid-gas mixture in a tube of constant radius 
is analyzed. The fluid is viscous, non-Newtonian, and incompressible; the gas is inviscid and com- 
pressible. Integration of the equations of continuity, momentum, and state enable the prediction 
of axial pressure, velocity, density, volumetric flow rate, and shear-stress profiles. Departures from 
corresponding profiles observed in the flow of non-Newtonian power-law fluids are evident. The 
apparent viscosity of the fluid-gas mixture is computed and compared to that of the fluid alone. 
A reduction in apparent viscosity is noted. Previously reported experimental evidence of a reduction 
in viscosity in a non-Newtonian fluid-gas mixture is recalled and it is claimed that the physical model 
presented here is capable of explaining the observed reduction in apparent viscosity. 

INTRODUCTION 

Fluid-gas mixtures represent a fluid mechanical problem of current techno- 
logical interest. Flows of this type occur throughout the foam processing in- 
dustry, in extruders and dies, for example. Previously, both theoretical3 and 
e~perimentall-~ studies have been conducted to investigate specific aspects of 
these flows. Blyer and Kweil present a free-volume viscosity model to account 
for the experimental observation that when small amounts of gas are added to 
a non-Newtonian power-law fluid the apparent viscosity of the resulting fluid-gas 
mixture decreases. An understanding of this phenomena would be an aid in the 
rational design of foam manufacturing equipment. In this article, a physical 
model of a fluid-gas mixture is presented and the apparent viscosity of the 
mixture is computed. This result is compared to the viscosity of the fluid alone, 
and a reduction in apparent viscosity is observed. This reduction in apparent 
viscosity is consistent with previously reported experiments using non-Newtonian 
fluid-gas mixtures. 

MATHEMATICAL MODEL 

In the following analysis, we are concerned with the one-dimensional, iso- 
thermal flow of a viscous fluid containing homogeneously dispersed bubbles of 
gas. Application of mass and momentum conservation and the equation-of-state 
of the fluid-gas mixture enables the reduction of axial pressure, velocity, density, 
volumetric flow rate, and shear-stress profiles. 

The fluid is considered non-Newtonian and incompressible. The fluid density, 
pf, is assumed constant and the fluid viscosity, qf, is assumed to obey a power-law 
relationship with shear rate, qf = m+n-1.1,2 The constants m and n are pa- 
rameters characterizing the fluid, and + is the shear rate. The gas is considered 
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inviscid and obeys the equation of state p = pg.RT, where p is the pressure, p g  
the gas density, 9'2 the specific gas constant, and T the temperature of the gas. 
Furthermore, it is assumed that the gas is insoluble in the fluid, and the gas 
temperature is constant and equal to the fluid temperature. The ratio of the 
mass of gas to the mass of fluid, denoted r ,  is assumed constant and is defined 
as r = M,/Mf. The density of the fluid-gas continuum is defined as p = MIV; 
where p is the density of the mixture, M the total mass of the mixture, and V the 
total volume. Substituting for the fluid and gas contributions to M and V and 
introducing the gas equation of state yields the equation of state of the fluid-gas 
mixture. 

M PfVf + ~ g v g  - - PfVf (1  + PgVglPfVf) - - PPf (1  + r )  ,=v= V f + V ,  V f  + vg (Pr + P )  
where p r  = r p f 3 T  has been introduced for convenience. This model requires 
that the gas and fluid phases be at  the same pressure, thus surface tension effects 
are neglected. 

To complete the mathematical formulation of the problem, we not apply the 
principle of mass and momentum conservation to the one-dimensional tube of 
radius R shown in Figure 1. 

Conservation of mass 

pu = G = constant 

- r R 2 d p  - T , ~ R R ~ x ( A ~ / A )  = r R 2 d ( p u 2 )  

( 2 )  

Conservation of momentum 

(3) 
In Eq. (3) 7, is the wall shear stress and Af is the area wetted by the fluid. This 

model assumes that the shear stress is transmitted by the fluid alone, hence the 
introduction of AF The area Af can be related to the tube area A as follows: 

(4) 
The area wetted by the gas A, and E = gas volumelfluid volume = rpf.RTlp = 
p , / p  have been introduced in eq. (4). 

It is now necessary to relate the wall shear stress, T,, to the fluid-gas mixture 
velocity u so that an integration of the equation of motion can be performed. We 
adopt-a friction-factor type of correlation, namely 

A = Af + A, = A f ( 1  + A,/Af)  = A f ( 1  + E )  

7, = 'I2 PU2f  (5) 
In many non-Newtonian fluids a t  low Reynolds number, the friction factor f is 

4-- 7-w 
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Fig. 1. Schematic diagram of one-dimensional steamtube. 
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correlated with Reynolds number by f = 16/Re, where Re = 8 ~ ~ - ~ p R ~ / m ( 3  + 
1/n)n.2,4-6 

We assume here that the viscosity is high enough and the length scale small 
enough so that the flow is inertia-free and the friction factor representation is 
valid. The Reynolds number is the value based on the flow properties averaged 
over the tube cross section. This is consistent with the assumption that the fluid 
alone contributes to the wall shear stress. 

Combining eqs. (1)-(5) and eliminating u yields the following differential 
equation for pressure: 

In eq. (6) the parameter n has been given the value n = l/2, a typical value for 
polyethylene plastics. 

The following nondimensional variables, denoted by superscript*, are intro- 
duced: 

P* = PIP0 

P* = P / P f  

x*  = XIL 

P: =.P*lPo 
where p o  and L are the reservoir pressure and capillary length, respectively. 

Equation (6) can be written in dimensionless terms as: 

subject to the boundary conditions; p*(x* = 0) = 1 and p*(x* = 1) = pa/p0 where 
p a  is the downstream pressure. Since eq. (7) is a first-order differential equation 
with two boundary conditions, G is an eigenvalue in this problem. This is rea- 
sonable, since for an imposed pressure drop, the mass flow rate is determined 
for a given fluid-gas mixture and this is the eigenvalue G. 

RESULTS 

As a representative example, we have chosen the following values for the 
constants that appear explicitly and implicitly in eq. (7); p o  = 100 atm = 1.014 
108 dyn/cm2, p a  = downstream pressure = 1 atm = 1.014 lo6 dyn/cm2, p f  = 0.7585 
glcm3, L = 2.54 cm, R = 0.023 cm, r = 0.005, m = 7.22 lo4 dyn sec1/21cm2, n = 
l/2, T = 2OO0C, R = 4.514 cal/gK, p r  = r p f R T  = 6.692 atm = 6.7857 lo6 dynlcm2, 
p :  = pr lpo  = 0.06692. These values are typical of those found in the flows of 
low-density polyethylene (LDPE) plastics in capillary rheometers. 

The inertia-free form of eq. (7) can be integrated numerically with the proper 
choice of G. For G = 0.17718 g m/cm2 sec, the resulting pressure profile matches 
the required boundary conditions of p * ( x *  = 0) = 1 and p * ( x *  = 1) = palPo = 
1/100 = 0.01 to an accuracy of 0.01%. The dimensionless pressure profile is 
tabulated in Table I and shown graphically in Figure 2. From G, u, 3 u ( x  = 
0) can be determined as uo = G l p ( x  = 0) = 0.1771810.7145 = 0.2480 cmlsec. The 
profiles of dimensionless velocity, u* = U / U O ,  and density p* = p lp f ,  can be de- 
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TABLE I 
Valuesofp*,p* ,u* ,T*weffv~ .x*  

X *  p *  =A 
P o  

0.00 
0.04 
0.08 
0.12 
0.16 
0.20 
0.24 
0.28 
0.32 
0.36 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0.92 
0.94 
0.96 
0.98 
1.00 

1 .oooo 
0.9567 
0.9135 
0.8704 
0.8274 
0.7844 
0.7415 
0.1988 
0.6561 
0.6136 
0.5712 
0.5290 
0.4869 
0.4451 
0.4036 
0.3623 
0.3214 
0.2810 
0.2411 
0.2019 
0.1637 
0.1267 
0.0916 
0.G591 
0.0444 
0.0310 
0.0194 
0.01 

P;, 

P I  P:+P*  P* 
u* = - ,*=P=- (1 + r)p* 

0.9420 1.000 
0.9393 1.003 
0.9364 1.006 
0.9332 1.009 
0.9298 1.013 
0.9260 1.017 
0.9218 1.022 
0.9172 1.027 
0.9120 1.033 
0.9062 1.040 
0.8996 1.047 
0.8921 1.056 
0.8836 1.066 
0.8736 1.078 
0.8621 1.093 
0.8403 1.110 
0.8318 1.132 
0.8117 1.160 
0.7866 1.198 
0.7548 1.248 
0.7134 1.320 
0.6576 1.432 
0.5807 1.622 
0.4713 1.999 
0.4008 2.350 
0.3182 2.960 
0.2259 4.170 
0.1306 7.213 

7 * weffa 

1.000 
0.9987 
0.9971 
0.9951 
0.9935 
0.9914 
0.9893 
0.9868 
0.9840 
0.9811 
0.9772 
0.9732 
0.9685 
0.9629 
0.9568 
0.9488 
0.9395 
0.9281 
0.9140 
0.8952 
0.8701 
0.8354 
0.7851 
0.7074 
0.6523 
0.5812 
0.4897 
0.3724 

termined from the continuity and state equations, respectively. These results 
are presented in Table I and in Figures 3 and 4. The effective wall shear stress, 
7,,ff ( x )  = 7,(x)/1 + 4 x 1  = r n ( 5 ~ ) l / ~ / R l / ~ [ l  + ~ ( x ) ] ,  is shown in Figure 5 and 
in Table I, nondimensionalized by ~ w ~ e f f  = 7 , ( x  = 0)/1 + 4 x  = 0)  as ~ * , e f f  = 
~ w e f f ( ~ ) / ~ w ~ e f f  = ~ * ' / ~ p * ( p :  + l)/(p; + p * ) .  In forming 7*,eff, the result ~ ( x )  
= p,/p has been used. The volumetric flow rate, Q = u.lrR2, is shown in Figure 
3 as Q* = Q ( x ) / Q ( x  = 0); clearly u* = Q*. The length-averaged effective wall 
shear stress 7,,ff is a useful quantity; it is 

??2 ( 5 U o )  'I2 - - J1 ~*,,ffdx* = 4.543105 dyn/cm2 
R112[1 + E(X = O ) ] O  
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Fig. 2. p’ vs. x*. 

DISCUSSION 

The axial-pressure profile shows deviations from the familiar “straight-line” 
pressure drop associated with the flow of a non-Newtonian power-law fluid. 
Figure 2 shows that the pressure is less than in a non-Newtonian pipe flow except 
at x * = 0 and 1. In fact, p* = 0.4660 at x * = 0.5, compared to the pipe flow value 
of p* = 0.505. 

The dimensionless density (Fig. 4) and dimensionless velocity (Fig. 3) show 
relatively little deviation from their corresponding behavior in non-Newtonian 
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Fig. 4. p* vs. x *  

pipe flow over most of the tube length. The density, p * ,  is within 10% of its 
reservoir value, po*, up to x * = 0.6; from x * = 0.6 to 1, a rapid density decrease 
is observed until the value of p* = 0.1306 is reached at  x* = 1. The velocity u* 
is also within 11% of its reservoir value up to x * = 0.6 and from x * = 0.6-1 a rapid 
increase is observed until u* = 7.213 is reached at x*  = 1. In contrast, p *  = u* 
= 1 for pipe flow of a non-Newtonian power-law fluid over the entire tube length. 
The rapid density decrease near the tube exit for the fluid-gas mixture can be 
explained by examining the fluid-gas equation-of-state, eq. (1). Near x * = 0,  
p* >> and p* N (1 + r ) ,  but near x* = 1, p* << p:, and p* N (1 + r)p*/p:. 

The dimensionless effective wall shear stress, T*,,ff, (Fig. 5) shows a contin- 
uously decreasing behavior, decreasing rapidly near x* = 1 where T*,,ff = 0.3724. 
These small values of shear stress act over small tube lengths, however. 

The importance of the inertia terms in this problem will now be examined. 
This comparison is represented by the ratio of the second and last terms in eq. 
(7) which compares the viscous term to the inertia term. Forming this ratio and 
substituting numerical values yields: 

I 0  

0 7  

0 0 1  0 2  0 3  0 4  0 5  0 6  0 -  o e  o a  

. -  
Fig. 5. r*,,ffvs. x * .  
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inertia (GR)3/2p:(p: + p*)'I2 dp* -- - 
viscous 2mL[5(1 + r - ) ~ f ] ' / ~ p * ~ / ~  dx* N 6.71OV7 << 1 

which validates the inertia-free assumption made previously. 
With these results we can now compute the apparent viscosity of the fluid-gas 

mixture. The usual definition for non-Newtonian fluids is 17 = TI?, where T is 
the wall shear stress and i /  the shear rate. However, both these parameters vary 
with axial position in this problem. To be consistent with viscosity measure- 
ments made on current experimental equipment (such as the McKelvey-Sieglaff 
- rheometer), we interpret r to be the length-averaged, effective wall shear stress, 
rWeff, and y to be the shear rate at  x = 0. To evaluate i. we use the expression 
i / o  = (TwOeff/m)2, which assumes the flow profile is locally a power law with n = 
l /2.  In fact this may not be true, the actual velocity profile may exhibit other 
power-law behavior but, without resorting to a two-dimensional analysis, we 
cannot solve for the exact radial dependence of velocity. Computing the ap- 
parent viscosity yields 

- 

= 9.592 103 g/cm sec 
4.543 105 J' r*,,ffdx* = r w e f f  - Twoeff - 

47.36 V a p p  = 7 
Yo ( r w 0 e f f / m ) 2  

The viscosity of the fluid alone corresponds to the flow with the same overall 
pressure'drop but with a different shear rate. The length-averaged, wall shear 
stress, 7,, shear rate a t  x = O , i / o ,  and resulting fluid viscosity vf are 

- 
r ,  = (PO - pa)R/2L = 4.545 lo5 dyn/cm2 

i.0 = 39.6 sec-' 

V f  = 4.545 105/39.6 = 1.148 lo4 g/cm sec 
Thus, the fluid-gas mixture represents a reduction in apparent viscosity, 

since 
V a p p I V f  = 0.836 

Blyler and Kweil present evidence that the apparent viscosity of a non- 
Newtonian fluid decreases with the addition of small weight percentages of gas. 
They report a 22% reduction in apparent viscosity when 0.5 wt % blowing agent 
was added to a LDPE. The apparent viscosity was defined by Blyler and Kwei 
as the ratio of length-averaged, wall shear stress, T, = ApR/2L, and apparent 
shear rate, j / a p p  = 4Q/.-R3, based on capillary entrance conditions (neglecting 
and effects and polymer compressibility). 

The constants used in our model were chosen to correspond to the experi- 
mental conditions reported by Blyler and Kwei and, on that basis, the model 
predicts a 16.4% reduction in apparent viscosity compared with a 22% reduction 
reported by Blyler and Kwei. The calculation presented here is a one-point 
comparison (i-e., at  one reservoir pressure); however, we feel that the physical 
model presented here is capable of explaining the observed decrease in apparent 
viscosity of a fluid-gas mixture compared to the viscosity of the fluid alone. 

For simple extrusion channel geometries (i.e., those in which the approximation 
of one-dimensional flow is adequate), this model can be used to compute the mass 
flow rate. The fluid properties, gas content, channel dimensions, pressures, and 
fluid temperature are required. Alternatively, if the mass flow rate is measured, 
the parameters m and n ,  in the power-law expression for the fluid, can be ex- 
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tracted. Equation (7) serves as a starting point for design in the extrusion of 
plastic foams. 

CONCLUSIONS 

Based on the results and discussion presented we can draw the following 
conclusions: 

(1) The physical model presented here is capable of explaining the experi- 
mentally observed decrease in apparent viscosity when small weight percentages 
of gas are added to a fluid under flow conditions similar to those found in a 
capillary rheometer. 

(2) The apparent viscosity defined as qapp ( x )  = 7, ,&) /+(x)  is a function of 
axial position for flows of fluid-gas mixtures. 

(3) The axial pressure, velocity, density, volumetric flow rate, and shear stress 
profiles of the fluid-gas mixture show departures compared to the corresponding 
profiles observed in flows of non-Newtonian power-law fluids. 

This paper presents the results of research carried out at  the Jet Propulsion Laboratory, California 
Institute of Technology, under NASA Contract NAS 7-100. 
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